cs.AI updates on arXiv.org 10月22日 12:23
基于RAG的车辆识别模型提升智能交通系统性能
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种将视觉语言模型与检索增强生成相结合的车辆识别模型,通过文本推理实现零样本识别,提高智能交通系统性能,实验表明,该方法在CLIP基线的基础上识别准确率提升了近20%。

arXiv:2510.18502v1 Announce Type: cross Abstract: Vehicle make and model recognition (VMMR) is an important task in intelligent transportation systems, but existing approaches struggle to adapt to newly released models. Contrastive Language-Image Pretraining (CLIP) provides strong visual-text alignment, yet its fixed pretrained weights limit performance without costly image-specific finetuning. We propose a pipeline that integrates vision language models (VLMs) with Retrieval-Augmented Generation (RAG) to support zero-shot recognition through text-based reasoning. A VLM converts vehicle images into descriptive attributes, which are compared against a database of textual features. Relevant entries are retrieved and combined with the description to form a prompt, and a language model (LM) infers the make and model. This design avoids large-scale retraining and enables rapid updates by adding textual descriptions of new vehicles. Experiments show that the proposed method improves recognition by nearly 20% over the CLIP baseline, demonstrating the potential of RAG-enhanced LM reasoning for scalable VMMR in smart-city applications.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

车辆识别 视觉语言模型 RAG 智能交通系统 零样本识别
相关文章