cs.AI updates on arXiv.org 10月22日 12:22
开放RAN中AI验证与解释性模型应用
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于可解释模型的轻量级验证方法,用于验证Open RAN中深度强化学习代理的行为,并通过决策树验证器实现实时一致性检查,以应对网络操作的不可靠性。

arXiv:2510.18417v1 Announce Type: cross Abstract: Open RAN introduces a flexible, cloud-based architecture for the Radio Access Network (RAN), enabling Artificial Intelligence (AI)/Machine Learning (ML)-driven automation across heterogeneous, multi-vendor deployments. While EXplainable Artificial Intelligence (XAI) helps mitigate the opacity of AI models, explainability alone does not guarantee reliable network operations. In this article, we propose a lightweight verification approach based on interpretable models to validate the behavior of Deep Reinforcement Learning (DRL) agents for RAN slicing and scheduling in Open RAN. Specifically, we use Decision Tree (DT)-based verifiers to perform near-real-time consistency checks at runtime, which would be otherwise unfeasible with computationally expensive state-of-the-art verifiers. We analyze the landscape of XAI and AI verification, propose a scalable architectural integration, and demonstrate feasibility with a DT-based slice-verifier. We also outline future challenges to ensure trustworthy AI adoption in Open RAN.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Open RAN AI验证 深度强化学习 决策树验证器 网络切片
相关文章