cs.AI updates on arXiv.org 10月22日 12:22
MENTOR:结合强化学习与教师指导的SLM优化框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为MENTOR的框架,旨在解决大型语言模型(LLMs)向小型语言模型(SLMs)迁移过程中遇到的问题。该框架结合了强化学习(RL)与教师指导的蒸馏技术,有效提升了SLMs的泛化能力和策略能力。

arXiv:2510.18383v1 Announce Type: cross Abstract: Distilling the tool-using capabilities of large language models (LLMs) into smaller, more efficient small language models (SLMs) is a key challenge for their practical application. The predominant approach, supervised fine-tuning (SFT), suffers from poor generalization as it trains models to imitate a static set of teacher trajectories rather than learn a robust methodology. While reinforcement learning (RL) offers an alternative, the standard RL using sparse rewards fails to effectively guide SLMs, causing them to struggle with inefficient exploration and adopt suboptimal strategies. To address these distinct challenges, we propose MENTOR, a framework that synergistically combines RL with teacher-guided distillation. Instead of simple imitation, MENTOR employs an RL-based process to learn a more generalizable policy through exploration. In addition, to solve the problem of reward sparsity, it uses a teacher's reference trajectory to construct a dense, composite teacher-guided reward that provides fine-grained guidance. Extensive experiments demonstrate that MENTOR significantly improves the cross-domain generalization and strategic competence of SLMs compared to both SFT and standard sparse-reward RL baselines.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

强化学习 教师指导 小型语言模型 泛化能力 策略能力
相关文章