cs.AI updates on arXiv.org 前天 12:20
信用评分数据增强最佳倍数研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文研究信用评分模型中的数据增强最佳倍数,对比了SMOTE、BorderlineSMOTE和ADASYN等技术在不同的倍数下(1x、2x、3x)对信用评分模型的影响,并揭示了最佳倍数与1:1平衡的差异性。

arXiv:2510.18252v1 Announce Type: cross Abstract: Credit scoring models face a critical challenge: severe class imbalance, with default rates typically below 10%, which hampers model learning and predictive performance. While synthetic data augmentation techniques such as SMOTE and ADASYN have been proposed to address this issue, the optimal augmentation ratio remains unclear, with practitioners often defaulting to full balancing (1:1 ratio) without empirical justification. This study systematically evaluates 10 data augmentation scenarios using the Give Me Some Credit dataset (97,243 observations, 7% default rate), comparing SMOTE, BorderlineSMOTE, and ADASYN at different multiplication factors (1x, 2x, 3x). All models were trained using XGBoost and evaluated on a held-out test set of 29,173 real observations. Statistical significance was assessed using bootstrap testing with 1,000 iterations. Key findings reveal that ADASYN with 1x multiplication (doubling the minority class) achieved optimal performance with AUC of 0.6778 and Gini coefficient of 0.3557, representing statistically significant improvements of +0.77% and +3.00% respectively (p = 0.017, bootstrap test). Higher multiplication factors (2x and 3x) resulted in performance degradation, with 3x showing a -0.48% decrease in AUC, suggesting a "law of diminishing returns" for synthetic oversampling. The optimal class imbalance ratio was found to be 6.6:1 (majority:minority), contradicting the common practice of balancing to 1:1. This work provides the first empirical evidence of an optimal "sweet spot" for data augmentation in credit scoring, with practical guidelines for industry practitioners and researchers working with imbalanced datasets. While demonstrated on a single representative dataset, the methodology provides a reproducible framework for determining optimal augmentation ratios in other imbalanced domains.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

信用评分 数据增强 倍数研究 SMOTE ADASYN
相关文章