cs.AI updates on arXiv.org 10月22日 12:20
自适应提示工程方法提升LLM输出效果
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种自适应提示工程方法,根据用户任务描述选择合适的提示技术,自动生成高质量提示,提升大型语言模型输出效果。实验结果表明,该方法在多个任务上优于标准提示和现有自动提示工具。

arXiv:2510.18162v1 Announce Type: cross Abstract: Prompt engineering is crucial for achieving reliable and effective outputs from large language models (LLMs), but its design requires specialized knowledge of prompting techniques and a deep understanding of target tasks. To address this challenge, we propose a novel method that adaptively selects task-appropriate prompting techniques based on users' abstract task descriptions and automatically generates high-quality prompts without relying on pre-existing templates or frameworks. The proposed method constructs a knowledge base that associates task clusters, characterized by semantic similarity across diverse tasks, with their corresponding prompting techniques. When users input task descriptions, the system assigns them to the most relevant task cluster and dynamically generates prompts by integrating techniques drawn from the knowledge base. An experimental evaluation of the proposed method on 23 tasks from BIG-Bench Extra Hard (BBEH) demonstrates superior performance compared with standard prompts and existing automatic prompt-generation tools, as measured by both arithmetic and harmonic mean scores. This research establishes a foundation for streamlining and standardizing prompt creation, enabling non-experts to effectively leverage LLMs.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型语言模型 自适应提示工程 自动提示生成
相关文章