cs.AI updates on arXiv.org 10月22日 12:20
LDDMs:语言与分类数据的离散扩散模型
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文研究了离散扩散在语言和其他分类数据中的应用,针对掩码去噪器反向转换通常按位置分解的局限性,提出了一种结合掩码离散扩散和连续扩散的潜在离散扩散模型(LDDMs),在无监督生成方面取得显著提升。

arXiv:2510.18114v1 Announce Type: cross Abstract: We study discrete diffusion for language and other categorical data and focus on a common limitation of masked denoisers: reverse transitions typically factorize across positions, which can weaken joint structure and degrade quality in few-step generation. We propose \emph{Latent Discrete Diffusion Models} (LDDMs), which couple a masked discrete diffusion over tokens with a continuous diffusion over latent embeddings. The latent channel provides a softer signal and carries cross-token dependencies that help resolve ambiguities. We present two instantiations: (i) FUJI-LDDMs, which perform fully joint denoising of tokens and latents, and (ii) SEQ-LDDMs, which sequentially resolve the latent and then the discrete chain conditionally on it. For both variants we derive ELBO-style objectives and discuss design choices to learn informative latents yet amenable to diffusoin modeling. In experiments, LDDMs yield improvements on unconditional generation metrics as compared to state-of-the-art masked discrete diffusion baselines, and are effective at lower sampling budgets, where unmasking many tokens per step is desirable.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

离散扩散 语言模型 分类数据 LDDMs 去噪
相关文章