cs.AI updates on arXiv.org 10月22日 12:20
ICU患者院内死亡预测模型研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文研究开发并评估了结合结构化临床数据和未结构化文本信息的机器学习模型,用于准确预测ICU患者的院内死亡率,并验证了文本特征对预测性能的显著提升。

arXiv:2510.18103v1 Announce Type: cross Abstract: Accurate early prediction of in-hospital mortality in intensive care units (ICUs) is essential for timely clinical intervention and efficient resource allocation. This study develops and evaluates machine learning models that integrate both structured clinical data and unstructured textual information, specifically discharge summaries and radiology reports, from the MIMIC-IV database. We used LASSO and XGBoost for feature selection, followed by a multivariate logistic regression trained on the top features identified by both models. Incorporating textual features using TF-IDF and BERT embeddings significantly improved predictive performance. The final logistic regression model, which combined structured and textual input, achieved an AUC of 0.918, compared to 0.753 when using structured data alone, a relative improvement 22%. The analysis of the decision curve demonstrated a superior standardized net benefit in a wide range of threshold probabilities (0.2-0.8), confirming the clinical utility of the model. These results underscore the added prognostic value of unstructured clinical notes and support their integration into interpretable feature-driven risk prediction models for ICU patients.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

ICU 院内死亡率 机器学习 文本信息 预测模型
相关文章