cs.AI updates on arXiv.org 10月22日 12:19
自适应分歧正则化策略优化:解决强化学习难题
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种自适应分歧正则化策略优化(ADRPO)方法,通过自动调整正则化强度以平衡探索与利用,在强化学习微调生成模型中取得了显著成果,特别是在文本到图像生成任务上,其性能优于现有的离线和在线方法。

arXiv:2510.18053v1 Announce Type: cross Abstract: Balancing exploration and exploitation during reinforcement learning fine-tuning of generative models presents a critical challenge, as existing approaches rely on fixed divergence regularization that creates an inherent dilemma: strong regularization preserves model capabilities but limits reward optimization, while weak regularization enables greater alignment but risks instability or reward hacking. We introduce Adaptive Divergence Regularized Policy Optimization (ADRPO), which automatically adjusts regularization strength based on advantage estimates-reducing regularization for high-value samples while applying stronger regularization to poor samples, enabling policies to navigate between exploration and aggressive exploitation according to data quality. Our implementation with Wasserstein-2 regularization for flow matching generative models achieves remarkable results on text-to-image generation, achieving better semantic alignment and diversity than offline methods like DPO and online methods with fixed regularization like ORW-CFM-W2. ADRPO enables a 2B parameter SD3 model to surpass much larger models with 4.8B and 12B parameters in attribute binding, semantic consistency, artistic style transfer, and compositional control while maintaining generation diversity. ADRPO generalizes to KL-regularized fine-tuning of both text-only LLMs and multi-modal reasoning models, enhancing existing online RL methods like GRPO. In LLM fine-tuning, ADRPO demonstrates an emergent ability to escape local optima through active exploration, while in multi-modal audio reasoning, it outperforms GRPO through superior step-by-step reasoning, enabling a 7B model to outperform substantially larger commercial models including Gemini 2.5 Pro and GPT-4o Audio, offering an effective plug-and-play solution to the exploration-exploitation challenge across diverse generative architectures and modalities.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

强化学习 生成模型 自适应正则化 文本到图像生成 探索-利用平衡
相关文章