cs.AI updates on arXiv.org 10月22日 12:19
反因果表征学习新框架ACIA
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种针对反因果设置(标签导致特征而非相反)的表征学习方法——ACIA,通过两层次设计,解决现有方法的局限性,实现高维数据的有效处理和理论上的泛化保证。

arXiv:2510.18052v1 Announce Type: cross Abstract: Causal representation learning in the anti-causal setting (labels cause features rather than the reverse) presents unique challenges requiring specialized approaches. We propose Anti-Causal Invariant Abstractions (ACIA), a novel measure-theoretic framework for anti-causal representation learning. ACIA employs a two-level design, low-level representations capture how labels generate observations, while high-level representations learn stable causal patterns across environment-specific variations. ACIA addresses key limitations of existing approaches by accommodating prefect and imperfect interventions through interventional kernels, eliminating dependency on explicit causal structures, handling high-dimensional data effectively, and providing theoretical guarantees for out-of-distribution generalization. Experiments on synthetic and real-world medical datasets demonstrate that ACIA consistently outperforms state-of-the-art methods in both accuracy and invariance metrics. Furthermore, our theoretical results establish tight bounds on performance gaps between training and unseen environments, confirming the efficacy of our approach for robust anti-causal learning.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

反因果学习 表征学习 ACIA框架 高维数据处理 泛化保证
相关文章