arXiv:2510.18038v1 Announce Type: cross Abstract: The red palm mite infestation has become a serious concern, particularly in regions with extensive palm cultivation, leading to reduced productivity and economic losses. Accurate and early identification of mite-infested plants is critical for effective management. The current study focuses on evaluating and comparing the ML model for classifying the affected plants and detecting the infestation. TriggerNet is a novel interpretable AI framework that integrates Grad-CAM, RISE, FullGrad, and TCAV to generate novel visual explanations for deep learning models in plant classification and disease detection. This study applies TriggerNet to address red palm mite (Raoiella indica) infestation, a major threat to palm cultivation and agricultural productivity. A diverse set of RGB images across 11 plant species, Arecanut, Date Palm, Bird of Paradise, Coconut Palm, Ginger, Citrus Tree, Palm Oil, Orchid, Banana Palm, Avocado Tree, and Cast Iron Plant was utilized for training and evaluation. Advanced deep learning models like CNN, EfficientNet, MobileNet, ViT, ResNet50, and InceptionV3, alongside machine learning classifiers such as Random Forest, SVM, and KNN, were employed for plant classification. For disease classification, all plants were categorized into four classes: Healthy, Yellow Spots, Reddish Bronzing, and Silk Webbing. Snorkel was used to efficiently label these disease classes by leveraging heuristic rules and patterns, reducing manual annotation time and improving dataset reliability.
