cs.AI updates on arXiv.org 10月22日 12:19
TriggerNet模型助力棕榈树病虫害检测
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文研究了利用TriggerNet模型对棕榈树病虫害进行分类和检测,以解决棕榈树种植区的病虫害问题,提高农业生产力。

arXiv:2510.18038v1 Announce Type: cross Abstract: The red palm mite infestation has become a serious concern, particularly in regions with extensive palm cultivation, leading to reduced productivity and economic losses. Accurate and early identification of mite-infested plants is critical for effective management. The current study focuses on evaluating and comparing the ML model for classifying the affected plants and detecting the infestation. TriggerNet is a novel interpretable AI framework that integrates Grad-CAM, RISE, FullGrad, and TCAV to generate novel visual explanations for deep learning models in plant classification and disease detection. This study applies TriggerNet to address red palm mite (Raoiella indica) infestation, a major threat to palm cultivation and agricultural productivity. A diverse set of RGB images across 11 plant species, Arecanut, Date Palm, Bird of Paradise, Coconut Palm, Ginger, Citrus Tree, Palm Oil, Orchid, Banana Palm, Avocado Tree, and Cast Iron Plant was utilized for training and evaluation. Advanced deep learning models like CNN, EfficientNet, MobileNet, ViT, ResNet50, and InceptionV3, alongside machine learning classifiers such as Random Forest, SVM, and KNN, were employed for plant classification. For disease classification, all plants were categorized into four classes: Healthy, Yellow Spots, Reddish Bronzing, and Silk Webbing. Snorkel was used to efficiently label these disease classes by leveraging heuristic rules and patterns, reducing manual annotation time and improving dataset reliability.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

TriggerNet 棕榈树病虫害 机器学习 图像识别 农业生产力
相关文章