cs.AI updates on arXiv.org 10月22日 12:17
LLM任务分解策略研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文对大型语言模型的任务分解策略进行深入研究,提出Select-Then-Decompose策略,优化性能与成本平衡。

arXiv:2510.17922v1 Announce Type: cross Abstract: Large language models (LLMs) have demonstrated remarkable reasoning and planning capabilities, driving extensive research into task decomposition. Existing task decomposition methods focus primarily on memory, tool usage, and feedback mechanisms, achieving notable success in specific domains, but they often overlook the trade-off between performance and cost. In this study, we first conduct a comprehensive investigation on task decomposition, identifying six categorization schemes. Then, we perform an empirical analysis of three factors that influence the performance and cost of task decomposition: categories of approaches, characteristics of tasks, and configuration of decomposition and execution models, uncovering three critical insights and summarizing a set of practical principles. Building on this analysis, we propose the Select-Then-Decompose strategy, which establishes a closed-loop problem-solving process composed of three stages: selection, execution, and verification. This strategy dynamically selects the most suitable decomposition approach based on task characteristics and enhances the reliability of the results through a verification module. Comprehensive evaluations across multiple benchmarks show that the Select-Then-Decompose consistently lies on the Pareto frontier, demonstrating an optimal balance between performance and cost. Our code is publicly available at https://github.com/summervvind/Select-Then-Decompose.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型语言模型 任务分解 性能优化 成本控制 Select-Then-Decompose
相关文章