cs.AI updates on arXiv.org 10月22日 12:16
联邦化LLM机器反学习策略研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文针对LLMs在实际应用中面临隐私、安全和知识去污问题,提出了一种联邦化的机器反学习策略,以解决LLMs去学习过程中连续异构需求、敏感数据访问不对称等难题,并通过实验证明其有效性和实用性。

arXiv:2510.17895v1 Announce Type: cross Abstract: Large Language Models (LLMs) are increasingly integrated into real-world applications, raising concerns about privacy, security and the need to remove undesirable knowledge. Machine Unlearning has emerged as a promising solution, yet faces two key challenges: (1) practical unlearning needs are often continuous and heterogeneous, and (2) they involve decentralized, sensitive data with asymmetric access. These factors result in inter-domain and intra-domain interference, which further amplifies the dilemma of unbalanced forgetting and retaining performance. In response, we propose a federated unlearning approach for LLMs that is scalable and privacy preserving. Our method decouples unlearning and retention via task-specific adapter learning and employs a hierarchical merging strategy to mitigate conflicting objectives and enables robust, adaptable unlearning updates. Comprehensive experiments on benchmarks of WMDP, MUSE, and TOFU showed that our approach effectively handles heterogeneous unlearning requests while maintaining strong LLM utility compared with baseline methods.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 机器反学习 联邦学习 数据隐私 安全
相关文章