cs.AI updates on arXiv.org 10月22日 12:16
MIN-Merging:缓解模型合并参数冲突新框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出MIN-Merging,一种基于路由器的框架,通过选择性合并最关键的神经元以减少参数冲突,提升模型合并效果。实验证明,在计算机视觉和自然语言处理领域,MIN-Merging在特定任务上提升性能,同时保持预训练模型在跨领域任务上的泛化能力。

arXiv:2510.17890v1 Announce Type: cross Abstract: Recent advances in deep learning have led to a surge of open-source models across diverse domains. While model merging offers a promising way to combine their strengths, existing approaches often suffer from parameter conflicts that degrade performance on domain-specific tasks. We propose MIN-Merging, a router-based framework that selectively merges the most important neurons to reduce such conflicts. Extensive experiments on Computer Vision(CV) and Natural Language Processing(NLP) benchmarks show that MIN-Merging achieves consistent gains on in-domain tasks while retaining the generalization ability of pretrained models on out-of-domain tasks. These results highlight its effectiveness as a practical solution to the parameter conflict problem in model merging.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

模型合并 参数冲突 MIN-Merging 深度学习 计算机视觉
相关文章