cs.AI updates on arXiv.org 10月22日 12:16
AI模型推理性能评估新方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种统一且可重复的AI模型推理性能评估方法,通过综合计算和环境指标,在现实服务条件下进行碳感知评估,以解决当前评估方法的碎片化问题。

arXiv:2510.17885v1 Announce Type: cross Abstract: The rapid advancement of Artificial Intelligence (AI) has created unprecedented demands for computational power, yet methods for evaluating the performance, efficiency, and environmental impact of deployed models remain fragmented. Current approaches often fail to provide a holistic view, making it difficult to compare and optimise systems across heterogeneous hardware, software stacks, and numeric precisions. To address this gap, we propose a unified and reproducible methodology for AI model inference that integrates computational and environmental metrics under realistic serving conditions. Our framework provides a pragmatic, carbon-aware evaluation by systematically measuring latency and throughput distributions, energy consumption, and location-adjusted carbon emissions, all while maintaining matched accuracy constraints for valid comparisons. We apply this methodology to multi-precision models across diverse hardware platforms, from data-centre accelerators like the GH200 to consumer-level GPUs such as the RTX 4090, running on mainstream software stacks including PyTorch, TensorRT, and ONNX Runtime. By systematically categorising these factors, our work establishes a rigorous benchmarking framework that produces decision-ready Pareto frontiers, clarifying the trade-offs between accuracy, latency, energy, and carbon. The accompanying open-source code enables independent verification and facilitates adoption, empowering researchers and practitioners to make evidence-based decisions for sustainable AI deployment.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

AI模型 性能评估 环境指标 碳感知 推理
相关文章