cs.AI updates on arXiv.org 10月22日 12:16
LLM在密码破解中的应用与局限
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文通过实证研究,评估了预训练LLMs在密码破解中的效能,发现其在特定任务上存在局限性,为未来研究提供了方向。

arXiv:2510.17884v1 Announce Type: cross Abstract: The remarkable capabilities of Large Language Models (LLMs) in natural language understanding and generation have sparked interest in their potential for cybersecurity applications, including password guessing. In this study, we conduct an empirical investigation into the efficacy of pre-trained LLMs for password cracking using synthetic user profiles. Specifically, we evaluate the performance of state-of-the-art open-source LLMs such as TinyLLaMA, Falcon-RW-1B, and Flan-T5 by prompting them to generate plausible passwords based on structured user attributes (e.g., name, birthdate, hobbies). Our results, measured using Hit@1, Hit@5, and Hit@10 metrics under both plaintext and SHA-256 hash comparisons, reveal consistently poor performance, with all models achieving less than 1.5% accuracy at Hit@10. In contrast, traditional rule-based and combinator-based cracking methods demonstrate significantly higher success rates. Through detailed analysis and visualization, we identify key limitations in the generative reasoning of LLMs when applied to the domain-specific task of password guessing. Our findings suggest that, despite their linguistic prowess, current LLMs lack the domain adaptation and memorization capabilities required for effective password inference, especially in the absence of supervised fine-tuning on leaked password datasets. This study provides critical insights into the limitations of LLMs in adversarial contexts and lays the groundwork for future efforts in secure, privacy-preserving, and robust password modeling.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 密码破解 安全性 密码学
相关文章