cs.AI updates on arXiv.org 10月22日 12:16
LLMs在入侵检测中的应用研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文评估了LLMs在入侵检测中的应用,通过将网络流转换为文本记录并加入布尔标志,采用结构化响应,并对比了不同类型提示下的效果,发现指令加标志可显著提高检测质量。

arXiv:2510.17883v1 Announce Type: cross Abstract: Large Language Models (LLMs) can reason over natural-language inputs, but their role in intrusion detection without fine-tuning remains uncertain. This study evaluates a prompt-only approach on UNSW-NB15 by converting each network flow to a compact textual record and augmenting it with lightweight, domain-inspired boolean flags (asymmetry, burst rate, TTL irregularities, timer anomalies, rare service/state, short bursts). To reduce output drift and support measurement, the model is constrained to produce structured, grammar-valid responses, and a single decision threshold is calibrated on a small development split. We compare zero-shot, instruction-guided, and few-shot prompting to strong tabular and neural baselines under identical splits, reporting accuracy, precision, recall, F1, and macro scores. Empirically, unguided prompting is unreliable, while instructions plus flags substantially improve detection quality; adding calibrated scoring further stabilizes results. On a balanced subset of two hundred flows, a 7B instruction-tuned model with flags reaches macro-F1 near 0.78; a lighter 3B model with few-shot cues and calibration attains F1 near 0.68 on one thousand examples. As the evaluation set grows to two thousand flows, decision quality decreases, revealing sensitivity to coverage and prompting. Tabular baselines remain more stable and faster, yet the prompt-only pipeline requires no gradient training, produces readable artifacts, and adapts easily through instructions and flags. Contributions include a flow-to-text protocol with interpretable cues, a calibration method for thresholding, a systematic baseline comparison, and a reproducibility bundle with prompts, grammar, metrics, and figures.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLMs 入侵检测 文本分析 模型比较
相关文章