cs.AI updates on arXiv.org 10月22日 12:16
轻量级SNN实现高效EEG人识别
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于脉冲神经网络(SNN)的轻量级EEG人识别方法,在EEG-Music Emotion Recognition Challenge数据集上达到100%的分类准确率,能耗低于传统深度神经网络,为高效BCIs提供新方向。

arXiv:2510.17879v1 Announce Type: cross Abstract: EEG-based person identification enables applications in security, personalized brain-computer interfaces (BCIs), and cognitive monitoring. However, existing techniques often rely on deep learning architectures at high computational cost, limiting their scope of applications. In this study, we propose a novel EEG person identification approach using spiking neural networks (SNNs) with a lightweight spiking transformer for efficiency and effectiveness. The proposed SNN model is capable of handling the temporal complexities inherent in EEG signals. On the EEG-Music Emotion Recognition Challenge dataset, the proposed model achieves 100% classification accuracy with less than 10% energy consumption of traditional deep neural networks. This study offers a promising direction for energy-efficient and high-performance BCIs. The source code is available at https://github.com/PatrickZLin/Decode-ListenerIdentity.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

EEG人识别 脉冲神经网络 高效BCIs
相关文章