arXiv:2510.17875v1 Announce Type: cross Abstract: 3D weakly supervised semantic segmentation (3D WSSS) aims to achieve semantic segmentation by leveraging sparse or low-cost annotated data, significantly reducing reliance on dense point-wise annotations. Previous works mainly employ class activation maps or pre-trained vision-language models to address this challenge. However, the low quality of pseudo-labels and the insufficient exploitation of 3D geometric priors jointly create significant technical bottlenecks in developing high-performance 3D WSSS models. In this paper, we propose a simple yet effective 3D weakly supervised semantic segmentation method that integrates 3D geometric priors into a class-aware guidance mechanism to generate high-fidelity pseudo labels. Concretely, our designed methodology first employs Class-Aware Label Refinement module to generate more balanced and accurate pseudo labels for semantic categrories. This initial refinement stage focuses on enhancing label quality through category-specific optimization. Subsequently, the Geometry-Aware Label Refinement component is developed, which strategically integrates implicit 3D geometric constraints to effectively filter out low-confidence pseudo labels that fail to comply with geometric plausibility. Moreover, to address the challenge of extensive unlabeled regions, we propose a Label Update strategy that integrates Self-Training to propagate labels into these areas. This iterative process continuously enhances pseudo-label quality while expanding label coverage, ultimately fostering the development of high-performance 3D WSSS models. Comprehensive experimental validation reveals that our proposed methodology achieves state-of-the-art performance on both ScanNet and S3DIS benchmarks while demonstrating remarkable generalization capability in unsupervised settings, maintaining competitive accuracy through its robust design.
