arXiv:2510.17852v1 Announce Type: cross Abstract: With the growing role of artificial intelligence in climate and weather research, efficient model training and inference are in high demand. Current models like FourCastNet and AI-GOMS depend heavily on GPUs, limiting hardware independence, especially for Chinese domestic hardware and frameworks. To address this issue, we present a framework for migrating large-scale atmospheric and oceanic models from PyTorch to MindSpore and optimizing for Chinese chips, and evaluating their performance against GPUs. The framework focuses on software-hardware adaptation, memory optimization, and parallelism. Furthermore, the model's performance is evaluated across multiple metrics, including training speed, inference speed, model accuracy, and energy efficiency, with comparisons against GPU-based implementations. Experimental results demonstrate that the migration and optimization process preserves the models' original accuracy while significantly reducing system dependencies and improving operational efficiency by leveraging Chinese chips as a viable alternative for scientific computing. This work provides valuable insights and practical guidance for leveraging Chinese domestic chips and frameworks in atmospheric and oceanic AI model development, offering a pathway toward greater technological independence.
