cs.AI updates on arXiv.org 10月22日 12:15
基于扩散模型的合成EEG信号生成与应用
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于扩散概率模型(DDPM)的合成EEG信号生成方法,用于脑机接口(BCI)应用。通过预处理真实EEG数据,训练扩散模型重建EEG通道,并评估生成信号质量。实验结果表明,该方法能显著提高EEG BCI分类准确率,缓解数据稀缺问题。

arXiv:2510.17832v1 Announce Type: cross Abstract: Electroencephalography (EEG) is a widely used, non-invasive method for capturing brain activity, and is particularly relevant for applications in Brain-Computer Interfaces (BCI). However, collecting high-quality EEG data remains a major challenge due to sensor costs, acquisition time, and inter-subject variability. To address these limitations, this study proposes a methodology for generating synthetic EEG signals associated with motor imagery brain tasks using Diffusion Probabilistic Models (DDPM). The approach involves preprocessing real EEG data, training a diffusion model to reconstruct EEG channels from noise, and evaluating the quality of the generated signals through both signal-level and task-level metrics. For validation, we employed classifiers such as K-Nearest Neighbors (KNN), Convolutional Neural Networks (CNN), and U-Net to compare the performance of synthetic data against real data in classification tasks. The generated data achieved classification accuracies above 95%, with low mean squared error and high correlation with real signals. Our results demonstrate that synthetic EEG signals produced by diffusion models can effectively complement datasets, improving classification performance in EEG-based BCIs and addressing data scarcity.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

EEG 脑机接口 扩散模型 数据生成 BCI
相关文章