cs.AI updates on arXiv.org 10月22日 12:15
新型BMISS框架提升神经肌肉诊断精度
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种新型生物物理模型信息源分离(BMISS)框架,通过结合解剖精确的前向EMG模型,实现了对神经驱动信息和运动神经元特性的无监督估计,有效提升了神经肌肉诊断的精度。

arXiv:2510.17822v1 Announce Type: cross Abstract: Recent advances in neural interfacing have enabled significant improvements in human-computer interaction, rehabilitation, and neuromuscular diagnostics. Motor unit (MU) decomposition from surface electromyography (sEMG) is a key technique for extracting neural drive information, but traditional blind source separation (BSS) methods fail to incorporate biophysical constraints, limiting their accuracy and interpretability. In this work, we introduce a novel Biophysical-Model-Informed Source Separation (BMISS) framework, which integrates anatomically accurate forward EMG models into the decomposition process. By leveraging MRI-based anatomical reconstructions and generative modeling, our approach enables direct inversion of a biophysically accurate forward model to estimate both neural drive and motor neuron properties in an unsupervised manner. Empirical validation in a controlled simulated setting demonstrates that BMISS achieves higher fidelity motor unit estimation while significantly reducing computational cost compared to traditional methods. This framework paves the way for non-invasive, personalized neuromuscular assessments, with potential applications in clinical diagnostics, prosthetic control, and neurorehabilitation.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

神经肌肉诊断 EMG模型 源分离技术 BMISS框架 生物物理模型
相关文章