cs.AI updates on arXiv.org 10月22日 12:14
LAFA:结合LLM与联邦分析的隐私保护数据分析系统
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出LAFA系统,融合大型语言模型与联邦分析,实现隐私保护的数据分析。通过多智能体架构,将自然语言查询转换为优化后的联邦分析工作流,提高执行效率。

arXiv:2510.18477v1 Announce Type: new Abstract: Large Language Models (LLMs) have shown great promise in automating data analytics tasks by interpreting natural language queries and generating multi-operation execution plans. However, existing LLM-agent-based analytics frameworks operate under the assumption of centralized data access, offering little to no privacy protection. In contrast, federated analytics (FA) enables privacy-preserving computation across distributed data sources, but lacks support for natural language input and requires structured, machine-readable queries. In this work, we present LAFA, the first system that integrates LLM-agent-based data analytics with FA. LAFA introduces a hierarchical multi-agent architecture that accepts natural language queries and transforms them into optimized, executable FA workflows. A coarse-grained planner first decomposes complex queries into sub-queries, while a fine-grained planner maps each subquery into a Directed Acyclic Graph of FA operations using prior structural knowledge. To improve execution efficiency, an optimizer agent rewrites and merges multiple DAGs, eliminating redundant operations and minimizing computational and communicational overhead. Our experiments demonstrate that LAFA consistently outperforms baseline prompting strategies by achieving higher execution plan success rates and reducing resource-intensive FA operations by a substantial margin. This work establishes a practical foundation for privacy-preserving, LLM-driven analytics that supports natural language input in the FA setting.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型语言模型 联邦分析 隐私保护 数据分析 智能体架构
相关文章