cs.AI updates on arXiv.org 10月22日 12:13
Med-VRAgent:提升VLMs医学视觉推理能力
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为Med-VRAgent的框架,通过结合视觉引导、自我奖励和蒙特卡洛树搜索,提升视觉语言模型在医学推理中的表现,并通过轨迹反馈和PPO优化进一步改进模型性能。

arXiv:2510.18424v1 Announce Type: new Abstract: Visual Language Models (VLMs) achieve promising results in medical reasoning but struggle with hallucinations, vague descriptions, inconsistent logic and poor localization. To address this, we propose a agent framework named Medical Visual Reasoning Agent (\textbf{Med-VRAgent}). The approach is based on Visual Guidance and Self-Reward paradigms and Monte Carlo Tree Search (MCTS). By combining the Visual Guidance with tree search, Med-VRAgent improves the medical visual reasoning capabilities of VLMs. We use the trajectories collected by Med-VRAgent as feedback to further improve the performance by fine-tuning the VLMs with the proximal policy optimization (PPO) objective. Experiments on multiple medical VQA benchmarks demonstrate that our method outperforms existing approaches.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

视觉语言模型 医学推理 Med-VRAgent 视觉引导 蒙特卡洛树搜索
相关文章