arXiv:2510.18134v1 Announce Type: new Abstract: What does it truly mean for a language model to "reason"? Most current evaluations and benchmarks reward models' correct standalone answers--but correctness alone reveals little about the process that produced them. In this work, we explore a different perspective: reasoning is not a static chain of steps, but a dynamic trajectory where ideas interact, clash, and evolve into deeper insights. To capture this dynamic, we draw on a well-established philosophical tradition: \textit{dialectics}, where reasoning unfolds through thesis, antithesis, and synthesis. Building on this, we present SIEV, a structured framework that evaluates reasoning of LLMs through dialectics. Unlike conventional evaluations, SIEV assesses not only the conclusion a model reaches, but how it gets there: its ability to resolve tension, integrate distinct ideas, and synthesize higher-order reasoning. This lens uncovers significant reasoning gaps in state-of-the-art models even under saturated benchmarks like GSM and MMLU. For instance, GPT-5-chat, a recent model, loses over 40 points (out of 100) when evaluated with SIEV on GSM. Our findings highlight that adopting a process-oriented, philosophically grounded approach enables a deeper, more rigorous, and more discriminative assessment of LLM reasoning.
