cs.AI updates on arXiv.org 10月22日 12:12
混合模型提升文本生成速度与质量
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种名为‘planned diffusion’的混合模型,结合自回归模型与扩散模型的优点,实现文本生成速度与质量的平衡。在AlpacaEval测试中,该模型在速度和质量之间取得了最优折衷,生成速度提升1.27倍至1.81倍,同时仅使胜率下降0.87%至5.4%。

arXiv:2510.18087v1 Announce Type: new Abstract: A central challenge in large language model inference is the trade-off between generation speed and output quality. Autoregressive models produce high-quality text but generate tokens sequentially. Diffusion models can generate tokens in parallel but often need many iterations to match the same quality. We propose planned diffusion, a hybrid method that combines the strengths of both paradigms. Planned diffusion works in two stages: first, the model creates a short autoregressive plan that breaks the output into smaller, independent spans. Second, the model generates these spans simultaneously using diffusion. This approach expands the speed-quality Pareto frontier and provides a practical path to faster, high-quality text generation. On AlpacaEval, a suite of 805 instruction-following prompts, planned diffusion achieves Pareto-optimal trade-off between quality and latency, achieving 1.27x to 1.81x speedup over autoregressive generation with only 0.87\% to 5.4\% drop in win rate, respectively. Our sensitivity analysis shows that the planning mechanism of planned diffusion is minimal and reliable, and simple runtime knobs exist to provide flexible control of the quality-latency trade-off.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

文本生成 混合模型 速度与质量平衡
相关文章