Fortune | FORTUNE 10月22日 01:20
企业AI应用从跟风到务实
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

两年前,许多公司在将AI融入运营时甚至没有成功的定义,而是被CIO套件中的AI恐慌驱动。如今,公司正密切关注其AI投资,寻求可衡量的成果,因为“最好的产品可以基于某种成功指标或评估,”克里格说。采用新产品时,克里格建议公司应问两个问题:“这是好产品吗?这是会成功和扩展的产品吗?”否则,“当事情变得模糊时,很难评估它是否有所帮助。”关于Anthropic的Claude Code,克里格告诉客户,他们可以根据工程师使用它的频率来判断产品的成功程度。一些公司已经吹嘘AI工具有了大幅提高生产力。然而,一些研究对AI是否能真正提高生产力表示怀疑。麻省理工学院的一项研究发表在周日发现,当由高技能工人使用AI时,它可以提高40%的生产力。但一些人质疑使用AI来更快地工作,尤其是在编码方面。一项由模型评估和威胁研究(METR)在7月份进行的研究发现,AI编码工具往往无法写出经验丰富的程序员水平的代码,并且研究参与者拒绝了一半以上的建议。当他们接受这些更改时,他们必须格外小心。尽管Anthropic CEO Dario Amodei在3月份表示,在未来三到六个月内,AI将编写90%的代码,“然后在12个月内,我们可能将进入一个AI基本上编写所有代码的世界,”但7月份的METR研究发现,使用AI编码工具使他们的任务时间增加了19%。

🌟 企业对AI的应用经历了从盲目跟风到寻求实际成果的转变。过去,许多公司并未明确AI成功的定义,而是受到CIO层级的AI恐慌情绪驱动。如今,公司更加关注AI投资的实际回报,寻求可衡量的成果,以确保AI的价值。

📊 企业在采用新产品时应评估其当前价值和未来扩展潜力。克里格建议公司问两个关键问题:这是好产品吗?这是会成功和扩展的产品吗?这有助于企业在AI应用中做出更明智的决策。

🔍 成功衡量AI产品的一个有效方法是观察其日常活跃使用指标。克里格强调,如果工具没有提供价值,人们不会每天都重复使用它。因此,日常活跃用户数是评估AI产品成功与否的重要指标。

⚠️ 尽管一些公司声称AI工具大幅提高了生产力,但研究对此表示怀疑。麻省理工学院的一项研究发现,当由高技能工人使用AI时,它可以提高40%的生产力。然而,另一项研究指出,AI编码工具往往无法达到经验丰富的程序员水平,且使用这些工具可能延长任务时间。

🤔 AI在提高生产力方面的实际效果仍存在争议。虽然一些公司报告了生产力的提升,但其他研究表明,AI编码工具可能无法达到预期效果,甚至可能阻碍工作进度。这表明企业在应用AI时需要谨慎评估其适用性和实际效益。

Two years ago, many companies didn’t even have a definition of success when implementing AI into their operations. Instead, “they were driven by this AI FOMO that was happening in the CIO suite,” said Krieger in a interview on the Superhuman AI: Decoding the Future Podcast.

Yet, now companies are taking a closer look at their AI investments and seeking some sort of return with measurable results, because “the best products can be grounded in some kind of success metric or evaluation,” he said.

When it comes to adopting a new product, Krieger said, companies should ask two questions: “Is this a good product now, and is this a product that’s going to set up to succeed and scale?”

Otherwise, “When it gets fuzzy, it’s very hard to then evaluate, did it help?”

In terms of Anthropic’s Claude Code, which launched in May, Krieger told customers they can tell how successful the product is based on how often engineers use it.

“I often ask people just to look at the daily active metrics because those don’t lie,” he said. “People do not use tools over and over again every day if they’re not providing value.”

The jury is out on whether AI actually boosts productivity 

Some companies have already touted major productivity boosts brought on by AI tools. Google in June said its AI efforts had made its engineers 10% more productive. Buy-now-pay-later company Klarna, whose CEO Sebastian Siemiatkowski said he wanted the company to be ChatGPT’s “favorite guinea pig” also claimed it was able to slow hiring and reduce its workforce to 3,000 people from 7,400 due to AI productivity gains.

An MIT study published Sunday found when AI is used by highly skilled workers, it can boost productivity by 40%. Still, some have cast doubt on using AI for working faster, especially in coding. A July study by Model Evaluation and Threat Research (METR) found AI coding tools often weren’t able to write code at the level of an experienced programmer, and participants in the study rejected suggestions just under half the time. When they did accept the changes, they had to be extra careful

While Anthropic CEO Dario Amodei said back in March that in three to six months AI would be writing 90% of code, “and then, in 12 months, we may be in a world where AI is writing essentially all of the code,” the July METR study found using AI coding tools made them take 19% longer on their tasks.

“While I like to believe that my productivity didn’t suffer while using AI for my tasks, it’s not unlikely that it might not have helped me as much as I anticipated or maybe even hampered my efforts,” said one participant in the study.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

企业AI应用 AI成功指标 AI生产力 AI工具评估 AI发展趋势
相关文章