cs.AI updates on arXiv.org 10月21日 12:30
基于贝叶斯实验设计的LLM信息采集能力提升
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于贝叶斯实验设计的通用方法,用于提高大型语言模型(LLM)从用户或其他外部源智能和自适应地收集信息的能力。该方法称为BED-LLM,通过迭代选择最大化预期信息增益(EIG)的问题或查询,显著提升了LLM在多轮对话和交互式接口方面的性能。

arXiv:2508.21184v2 Announce Type: replace-cross Abstract: We propose a general-purpose approach for improving the ability of Large Language Models (LLMs) to intelligently and adaptively gather information from a user or other external source using the framework of sequential Bayesian experimental design (BED). This enables LLMs to act as effective multi-turn conversational agents and interactively interface with external environments. Our approach, which we call BED-LLM (Bayesian Experimental Design with Large Language Models), is based on iteratively choosing questions or queries that maximize the expected information gain (EIG) about the task of interest given the responses gathered previously. We show how this EIG can be formulated (and then estimated) in a principled way using a probabilistic model derived from the LLM's predictive distributions and provide detailed insights into key decisions in its construction and updating procedure. We find that BED-LLM achieves substantial gains in performance across a wide range of tests based on the 20 questions game and using the LLM to actively infer user preferences, compared to direct prompting of the LLM and other adaptive design strategies.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 贝叶斯实验设计 信息采集 多轮对话 交互式接口
相关文章