cs.AI updates on arXiv.org 10月21日 12:30
注意力机制中归一化限制研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文研究注意力机制中归一化的限制,通过理论框架分析模型选择性能力与几何分离,并对GPT-2模型进行实验验证,揭示随着选词增加,模型区分信息词的能力下降,并提出改进策略。

arXiv:2508.17821v2 Announce Type: replace-cross Abstract: This paper investigates the limitations of the normalization in attention mechanisms. We begin with a theoretical framework that enables the identification of the model's selective ability and the geometric separation involved in token selection. Our analysis includes explicit bounds on distances and separation criteria for token vectors under softmax scaling. Through experiments with pre-trained GPT-2 model, we empirically validate our theoretical results and analyze key behaviors of the attention mechanism. Notably, we demonstrate that as the number of selected tokens increases, the model's ability to distinguish informative tokens declines, often converging toward a uniform selection pattern. We also show that gradient sensitivity under softmax normalization presents challenges during training, especially at low temperature settings. These findings advance current understanding of softmax-based attention mechanism and motivate the need for more robust normalization and selection strategies in future attention architectures.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

注意力机制 归一化 GPT-2 模型验证 改进策略
相关文章