cs.AI updates on arXiv.org 10月21日 12:29
基于图结构注意力谱特征的幻觉检测新方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于图结构注意力谱特征的幻觉检测方法,通过将注意力图视为图结构的邻接矩阵,利用拉普拉斯矩阵的前k个特征值作为幻觉检测的输入,在注意力方法中实现幻觉检测性能的提升。

arXiv:2502.17598v2 Announce Type: replace-cross Abstract: Large Language Models (LLMs) have demonstrated remarkable performance across various tasks but remain prone to hallucinations. Detecting hallucinations is essential for safety-critical applications, and recent methods leverage attention map properties to this end, though their effectiveness remains limited. In this work, we investigate the spectral features of attention maps by interpreting them as adjacency matrices of graph structures. We propose the $\text{LapEigvals}$ method, which utilises the top-$k$ eigenvalues of the Laplacian matrix derived from the attention maps as an input to hallucination detection probes. Empirical evaluations demonstrate that our approach achieves state-of-the-art hallucination detection performance among attention-based methods. Extensive ablation studies further highlight the robustness and generalisation of $\text{LapEigvals}$, paving the way for future advancements in the hallucination detection domain.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

幻觉检测 注意力图 图结构 拉普拉斯矩阵 特征值
相关文章