cs.AI updates on arXiv.org 10月21日 12:29
基于语义对应的无监督外观迁移
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于语义对应的无监督外观迁移方法,通过显式地重新排列特征,实现从参考图像的外观生成具有目标图像结构的图像,并保持结构完整和颜色正确。

arXiv:2406.07008v2 Announce Type: replace-cross Abstract: As pre-trained text-to-image diffusion models have become a useful tool for image synthesis, people want to specify the results in various ways. This paper tackles training-free appearance transfer, which produces an image with the structure of a target image from the appearance of a reference image. Existing methods usually do not reflect semantic correspondence, as they rely on query-key similarity within the self-attention layer to establish correspondences between images. To this end, we propose explicitly rearranging the features according to the dense semantic correspondences. Extensive experiments show the superiority of our method in various aspects: preserving the structure of the target and reflecting the correct color from the reference, even when the two images are not aligned.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

外观迁移 语义对应 无监督学习
相关文章