cs.AI updates on arXiv.org 10月21日 12:29
SAM算法隐私风险研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文研究优化算法SAM的隐私风险,发现其在多个数据集和攻击方法上比传统SGD更容易受到成员推断攻击,尽管测试误差更低。研究认为SAM能更好地记住不典型子模式,从而提高泛化能力但增加隐私风险。

arXiv:2310.00488v3 Announce Type: replace-cross Abstract: Optimization algorithms that seek flatter minima such as Sharpness-Aware Minimization (SAM) are widely credited with improved generalization. We ask whether such gains impact membership privacy. Surprisingly, we find that SAM is more prone to membership inference attacks than classical SGD across multiple datasets and attack methods, despite achieving lower test error. This is an intriguing phenomenon as conventional belief posits that higher membership privacy risk is associated with poor generalization. We conjecture that SAM is capable of memorizing atypical subpatterns more, leading to better generalization but higher privacy risk. We empirically validate our hypothesis by running extensive analysis on memorization and influence scores. Finally, we theoretically show how a model that captures minority subclass features more can effectively generalize better \emph{and} have higher membership privacy risk.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

SAM算法 隐私风险 成员推断攻击 泛化能力 优化算法
相关文章