cs.AI updates on arXiv.org 10月21日 12:29
UVM框架增强LLM搜索鲁棒性
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出UVM框架,利用价值模型引导搜索,增强大型语言模型(LLM)的搜索鲁棒性,通过不确定性感知价值模型和群体Thompson抽样方法,显著降低验证器失败率并提升解决方案覆盖率。

arXiv:2502.11155v2 Announce Type: replace Abstract: Value model guided search is effective in steering LLM generation but suffers from a lack of robustness. This is due to verifier failure: imperfect VMs mistakenly prune valid reasoning paths, especially when encountering unseen reasoning paths generated during search. To address this, we propose an uncertainty-aware framework with two key components: (1) Uncertainty-Aware Value Models (UVMs), which replace single-point value estimates with value distributions to quantify prediction reliability, and (2) Group Thompson Sampling, an efficient algorithm that selects candidates based on their probability of being optimal. Experiments on two In-Distribution (ID) settings (GSM8K, MATH) and three Out-Of-Distribution (OOD) settings (e.g., AIME25, Minerva Math) show our method significantly mitigates verifier failure and boosts solution coverage, especially on OOD problems. This work provides the first systematic integration of uncertainty quantification into LLM search paradigms, enhancing robustness. The code is released at https://github.com/FreedomIntelligence/UVM.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

UVM框架 LLM搜索 鲁棒性 不确定性感知 价值模型
相关文章