cs.AI updates on arXiv.org 10月21日 12:28
多语言文本到图像人物检索新框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种面向多语言文本到图像人物检索的新框架,通过开发多语言TIPR基准和Bi-IRRA模型,解决模态异构性和语言限制问题,在多语言数据集上实现最先进结果。

arXiv:2510.17685v1 Announce Type: cross Abstract: Text-to-image person retrieval (TIPR) aims to identify the target person using textual descriptions, facing challenge in modality heterogeneity. Prior works have attempted to address it by developing cross-modal global or local alignment strategies. However, global methods typically overlook fine-grained cross-modal differences, whereas local methods require prior information to explore explicit part alignments. Additionally, current methods are English-centric, restricting their application in multilingual contexts. To alleviate these issues, we pioneer a multilingual TIPR task by developing a multilingual TIPR benchmark, for which we leverage large language models for initial translations and refine them by integrating domain-specific knowledge. Correspondingly, we propose Bi-IRRA: a Bidirectional Implicit Relation Reasoning and Aligning framework to learn alignment across languages and modalities. Within Bi-IRRA, a bidirectional implicit relation reasoning module enables bidirectional prediction of masked image and text, implicitly enhancing the modeling of local relations across languages and modalities, a multi-dimensional global alignment module is integrated to bridge the modality heterogeneity. The proposed method achieves new state-of-the-art results on all multilingual TIPR datasets. Data and code are presented in https://github.com/Flame-Chasers/Bi-IRRA.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

文本到图像检索 多语言处理 模态异构 Bi-IRRA模型
相关文章