cs.AI updates on arXiv.org 10月21日 12:28
CaMiT:时序汽车模型数据集推动视觉适应研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍CaMiT数据集,旨在捕捉汽车模型随时间演变的时序数据,并提出了时序增量分类设置,通过两种策略提高模型时序鲁棒性,为时序视觉识别和生成提供丰富基准。

arXiv:2510.17626v1 Announce Type: cross Abstract: AI systems must adapt to evolving visual environments, especially in domains where object appearances change over time. We introduce Car Models in Time (CaMiT), a fine-grained dataset capturing the temporal evolution of car models, a representative class of technological artifacts. CaMiT includes 787K labeled samples of 190 car models (2007-2023) and 5.1M unlabeled samples (2005-2023), supporting both supervised and self-supervised learning. Static pretraining on in-domain data achieves competitive performance with large-scale generalist models while being more resource-efficient, yet accuracy declines when models are tested across years. To address this, we propose a time-incremental classification setting, a realistic continual learning scenario with emerging, evolving, and disappearing classes. We evaluate two strategies: time-incremental pretraining, which updates the backbone, and time-incremental classifier learning, which updates only the final layer, both improving temporal robustness. Finally, we explore time-aware image generation that leverages temporal metadata during training, yielding more realistic outputs. CaMiT offers a rich benchmark for studying temporal adaptation in fine-grained visual recognition and generation.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

时序数据集 视觉适应 汽车模型 CaMiT 视觉识别
相关文章