cs.AI updates on arXiv.org 10月21日 12:28
CEPerFed:高效个性化联邦学习新方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为CEPerFed的通信高效个性化联邦学习方法,用于解决多脉冲MRI分类中的数据异质性和通信开销问题,通过结合历史风险梯度和历史均值梯度,以及采用分层奇异值分解策略,有效提升了模型训练的效率和稳定性。

arXiv:2510.17584v1 Announce Type: cross Abstract: Multi-pulse magnetic resonance imaging (MRI) is widely utilized for clinical practice such as Alzheimer's disease diagnosis. To train a robust model for multi-pulse MRI classification, it requires large and diverse data from various medical institutions while protecting privacy by preventing raw data sharing across institutions. Although federated learning (FL) is a feasible solution to address this issue, it poses challenges of model convergence due to the effect of data heterogeneity and substantial communication overhead due to large numbers of parameters transmitted within the model. To address these challenges, we propose CEPerFed, a communication-efficient personalized FL method. It mitigates the effect of data heterogeneity by incorporating client-side historical risk gradients and historical mean gradients to coordinate local and global optimization. The former is used to weight the contributions from other clients, enhancing the reliability of local updates, while the latter enforces consistency between local updates and the global optimization direction to ensure stable convergence across heterogeneous data distributions. To address the high communication overhead, we propose a hierarchical SVD (HSVD) strategy that transmits only the most critical information required for model updates. Experiments on five classification tasks demonstrate the effectiveness of the CEPerFed method. The code will be released upon acceptance at https://github.com/LD0416/CEPerFed.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

联邦学习 多脉冲MRI 数据异质性 通信效率 个性化
相关文章