cs.AI updates on arXiv.org 10月21日 12:27
SAKE:首个针对LALM听觉属性知识编辑的基准测试
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍SAKE,首个针对大型音频语言模型(LALM)听觉属性知识编辑的基准测试,并对其在多个方面的表现进行了评估,旨在推动知识编辑在听觉模态的应用。

arXiv:2510.16917v1 Announce Type: cross Abstract: Knowledge editing offers an efficient way to update model knowledge without full retraining, but prior work has concentrated almost exclusively on textual or visual modalities. We introduce SAKE, the first benchmark specifically designed for editing auditory attribute knowledge in Large Audio-Language Models (LALMs). Unlike factual updates, SAKE targets several abstract auditory attributes, capturing knowledge types that go beyond conventional textual and visual domains. We benchmark seven editing methods on two LALMs along four dimensions: reliability, generality, audio/text locality, and portability. Results highlight challenges such as preserving intra-attribute knowledge unrelated to the edit, generalizing edits to multimodal reasoning, and maintaining edits under sequential updates. SAKE provides a principled framework to study how knowledge editing extends to the auditory modalities, opening new directions for maintaining and adapting LALMs in more diverse real-world scenarios.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

知识编辑 音频语言模型 听觉属性 基准测试 LALM
相关文章