cs.AI updates on arXiv.org 前天 12:27
DrivAerStar:汽车空气动力学优化新标准
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出DrivAerStar,一个包含12,000个工业级汽车CFD模拟的数据集,旨在解决传统空气动力学优化方法的问题。通过优化网格策略和严格的壁面控制,该数据集在风洞验证中实现了1.04%以下的误差,并显著降低了计算成本,为数据驱动型汽车空气动力学优化提供了新标准。

arXiv:2510.16857v1 Announce Type: cross Abstract: Vehicle aerodynamics optimization has become critical for automotive electrification, where drag reduction directly determines electric vehicle range and energy efficiency. Traditional approaches face an intractable trade-off: computationally expensive Computational Fluid Dynamics (CFD) simulations requiring weeks per design iteration, or simplified models that sacrifice production-grade accuracy. While machine learning offers transformative potential, existing datasets exhibit fundamental limitations -- inadequate mesh resolution, missing vehicle components, and validation errors exceeding 5% -- preventing deployment in industrial workflows. We present DrivAerStar, comprising 12,000 industrial-grade automotive CFD simulations generated using $\text{STAR-CCM+}^\unicode{xAE}$ software. The dataset systematically explores three vehicle configurations through 20 Computer Aided Design (CAD) parameters via Free Form Deformation (FFD) algorithms, including complete engine compartments and cooling systems with realistic internal airflow. DrivAerStar achieves wind tunnel validation accuracy below 1.04% -- a five-fold improvement over existing datasets -- through refined mesh strategies with strict wall $y^+$ control. Benchmarks demonstrate that models trained on this data achieve production-ready accuracy while reducing computational costs from weeks to minutes. This represents the first dataset bridging academic machine learning research and industrial CFD practice, establishing a new standard for data-driven aerodynamic optimization in automotive development. Beyond automotive applications, DrivAerStar demonstrates a paradigm for integrating high-fidelity physics simulations with Artificial Intelligence (AI) across engineering disciplines where computational constraints currently limit innovation.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

汽车空气动力学 数据集 CFD模拟 优化 机器学习
相关文章