cs.AI updates on arXiv.org 10月21日 12:27
NGC框架:构建高效、可解释的大神经网络
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出Neuronal Group Communication (NGC)框架,将神经网络视为神经元群体间动态交互的系统,通过低维信号交换实现模型压缩和高效推理,并在大型语言模型中验证其有效性。

arXiv:2510.16851v1 Announce Type: cross Abstract: The ever-increasing scale of modern neural networks has brought unprecedented performance alongside daunting challenges in efficiency and interpretability. This paper addresses the core question of how to build large neural systems that learn efficient, modular, and interpretable representations. We propose Neuronal Group Communication (NGC), a theory-driven framework that reimagines a neural network as a dynamical system of interacting neuronal groups rather than a monolithic collection of neural weights. Instead of treating each weight as an independent trainable parameter, NGC treats weights as transient interactions between embedding-like neuronal states, with neural computation unfolding through iterative communication among groups of neurons. This low-rank, modular representation yields compact models: groups of neurons exchange low-dimensional signals, enabling intra-group specialization and inter-group information sharing while dramatically reducing redundant parameters. By drawing on dynamical systems theory, we introduce a neuronal stability metric (analogous to Lyapunov stability) that quantifies the contraction of neuron activations toward stable patterns during sequence processing. Using this metric, we reveal that emergent reasoning capabilities correspond to an external driving force or ``potential'', which nudges the neural dynamics away from trivial trajectories while preserving stability. Empirically, we instantiate NGC in large language models (LLMs) and demonstrate improved performance on complex reasoning benchmarks under moderate compression. NGC consistently outperforms standard low-rank approximations and cross-layer basis-sharing methods at comparable compression rates. We conclude by discussing the broader implications of NGC, including how structured neuronal group dynamics might relate to generalization in high-dimensional learning systems.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

NGC框架 神经网络 模型压缩 大型语言模型
相关文章