cs.AI updates on arXiv.org 10月21日 12:27
ReefNet:大规模珊瑚礁图像数据集及其应用
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了ReefNet,一个包含全球珊瑚礁图像的公共数据集,用于珊瑚礁监测与保护。数据集聚合了76个CoralNet来源的图像和红海的Al Wajh站点的图像,并提供了精确的分类标签。本文还评估了数据集在监督学习和零样本学习中的应用,为珊瑚礁监测与保护提供了有价值的参考。

arXiv:2510.16822v1 Announce Type: cross Abstract: Coral reefs are rapidly declining due to anthropogenic pressures such as climate change, underscoring the urgent need for scalable, automated monitoring. We introduce ReefNet, a large public coral reef image dataset with point-label annotations mapped to the World Register of Marine Species (WoRMS). ReefNet aggregates imagery from 76 curated CoralNet sources and an additional site from Al Wajh in the Red Sea, totaling approximately 925000 genus-level hard coral annotations with expert-verified labels. Unlike prior datasets, which are often limited by size, geography, or coarse labels and are not ML-ready, ReefNet offers fine-grained, taxonomically mapped labels at a global scale to WoRMS. We propose two evaluation settings: (i) a within-source benchmark that partitions each source's images for localized evaluation, and (ii) a cross-source benchmark that withholds entire sources to test domain generalization. We analyze both supervised and zero-shot classification performance on ReefNet and find that while supervised within-source performance is promising, supervised performance drops sharply across domains, and performance is low across the board for zero-shot models, especially for rare and visually similar genera. This provides a challenging benchmark intended to catalyze advances in domain generalization and fine-grained coral classification. We will release our dataset, benchmarking code, and pretrained models to advance robust, domain-adaptive, global coral reef monitoring and conservation.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

珊瑚礁监测 数据集 图像识别 人工智能 海洋保护
相关文章