arXiv:2510.16708v1 Announce Type: cross Abstract: Cardiovascular disease has become increasingly prevalent in modern society and has a significant effect on global health and well-being. Heart-related conditions are intricate, multifaceted disorders, which may be influenced by a combination of genetic predispositions, lifestyle choices, and various socioeconomic and clinical factors. Information regarding these potentially complex interrelationships is dispersed among diverse types of textual data, which include patient narratives, medical records, and scientific literature, among others. Natural language processing (NLP) techniques have increasingly been adopted as a powerful means to analyse and make sense of this vast amount of unstructured data. This, in turn, can allow healthcare professionals to gain deeper insights into the cardiology field, which has the potential to revolutionize current approaches to the diagnosis, treatment, and prevention of cardiac problems. This review provides a detailed overview of NLP research in cardiology between 2014 and 2025. We queried six literature databases to find articles describing the application of NLP techniques in the context of a range of different cardiovascular diseases. Following a rigorous screening process, we identified a total of 265 relevant articles. We analysed each article from multiple dimensions, i.e., NLP paradigm types, cardiology-related task types, cardiovascular disease types, and data source types. Our analysis reveals considerable diversity within each of these dimensions, thus demonstrating the considerable breadth of NLP research within the field. We also perform a temporal analysis, which illustrates the evolution and changing trends in NLP methods employed over the last decade that we cover. To our knowledge, the review constitutes the most comprehensive overview of NLP research in cardiology to date.
