cs.AI updates on arXiv.org 10月21日 12:26
DiMo框架:多智能体协作提升LLM推理可解释性
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为DiMo的多智能体协作框架,通过模拟四个专业LLM智能体之间的结构化辩论,提升LLM的性能和可解释性。实验表明,DiMo在多个基准测试中优于单模型和辩论基线,尤其是在数学问题上表现优异。

arXiv:2510.16645v1 Announce Type: cross Abstract: Large Language Models (LLMs) demonstrate strong performance but often lack interpretable reasoning. This paper introduces the Multi-Agent Collaboration Framework for Diverse Thinking Modes (DiMo), which enhances both performance and interpretability by simulating a structured debate among four specialized LLM agents. Each agent embodies a distinct reasoning paradigm, allowing the framework to collaboratively explore diverse cognitive approaches. Through iterative debate, agents challenge and refine initial responses, yielding more robust conclusions and an explicit, auditable reasoning chain. Across six benchmarks and under a unified open-source setup, DiMo improves accuracy over widely used single-model and debate baselines, with the largest gains on math. We position DiMo as a semantics-aware, Web-native multi-agent framework: it models human-machine intelligence with LLM agents that produce semantically typed, URL-annotated evidence chains for explanations and user-friendly interactions. Although our experiments use standard reasoning benchmarks, the framework is designed to be instantiated over Web corpora and knowledge graphs, combining retrieval-augmented reasoning with structured justifications that downstream systems can inspect and reuse.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 多智能体协作 可解释性 推理 DiMo框架
相关文章