cs.AI updates on arXiv.org 10月21日 12:26
深度学习加速医学图像分析
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种深度学习框架,旨在提高多模态医学图像分析的诊断准确性和计算效率,实现实时优化策略,并支持边缘设备、服务器和云基础设施。

arXiv:2510.16611v1 Announce Type: cross Abstract: Medical imaging plays a vital role in modern diagnostics; however, interpreting high-resolution radiological data remains time-consuming and susceptible to variability among clinicians. Traditional image processing techniques often lack the precision, robustness, and speed required for real-time clinical use. To overcome these limitations, this paper introduces a deep learning framework for real-time medical image analysis designed to enhance diagnostic accuracy and computational efficiency across multiple imaging modalities, including X-ray, CT, and MRI. The proposed system integrates advanced neural network architectures such as U-Net, EfficientNet, and Transformer-based models with real-time optimization strategies including model pruning, quantization, and GPU acceleration. The framework enables flexible deployment on edge devices, local servers, and cloud infrastructures, ensuring seamless interoperability with clinical systems such as PACS and EHR. Experimental evaluations on public benchmark datasets demonstrate state-of-the-art performance, achieving classification accuracies above 92%, segmentation Dice scores exceeding 91%, and inference times below 80 milliseconds. Furthermore, visual explanation tools such as Grad-CAM and segmentation overlays enhance transparency and clinical interpretability. These results indicate that the proposed framework can substantially accelerate diagnostic workflows, reduce clinician workload, and support trustworthy AI integration in time-critical healthcare environments.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

深度学习 医学图像 实时分析 计算效率
相关文章