cs.AI updates on arXiv.org 10月21日 12:26
LLMs助力化学推理:无标签数据下分子结构解析
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种利用通用大型语言模型(LLMs)进行分子推理的新框架,无需标签数据。通过原子标识锚定思维链,识别化学片段及反应类型,在无标签数据下实现化学反应位点、反应类和最终反应物的识别。

arXiv:2510.16590v1 Announce Type: cross Abstract: Applications of machine learning in chemistry are often limited by the scarcity and expense of labeled data, restricting traditional supervised methods. In this work, we introduce a framework for molecular reasoning using general-purpose Large Language Models (LLMs) that operates without requiring labeled training data. Our method anchors chain-of-thought reasoning to the molecular structure by using unique atomic identifiers. First, the LLM performs a one-shot task to identify relevant fragments and their associated chemical labels or transformation classes. In an optional second step, this position-aware information is used in a few-shot task with provided class examples to predict the chemical transformation. We apply our framework to single-step retrosynthesis, a task where LLMs have previously underperformed. Across academic benchmarks and expert-validated drug discovery molecules, our work enables LLMs to achieve high success rates in identifying chemically plausible reaction sites ($\geq90\%$), named reaction classes ($\geq40\%$), and final reactants ($\geq74\%$). Beyond solving complex chemical tasks, our work also provides a method to generate theoretically grounded synthetic datasets by mapping chemical knowledge onto the molecular structure and thereby addressing data scarcity.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

机器学习 化学推理 LLMs 分子结构 无标签数据
相关文章