cs.AI updates on arXiv.org 10月21日 12:26
Urdu AI文本检测框架研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出针对乌尔都语AI生成文本检测框架,通过平衡数据集、语言统计分析和模型微调,提升AI文本检测性能,助力乌尔都语社区对抗虚假信息和学术不端。

arXiv:2510.16573v1 Announce Type: cross Abstract: Large Language Models (LLMs) are now capable of generating text that closely resembles human writing, making them powerful tools for content creation, but this growing ability has also made it harder to tell whether a piece of text was written by a human or by a machine. This challenge becomes even more serious for languages like Urdu, where there are very few tools available to detect AI-generated text. To address this gap, we propose a novel AI-generated text detection framework tailored for the Urdu language. A balanced dataset comprising 1,800 humans authored, and 1,800 AI generated texts, sourced from models such as Gemini, GPT-4o-mini, and Kimi AI was developed. Detailed linguistic and statistical analysis was conducted, focusing on features such as character and word counts, vocabulary richness (Type Token Ratio), and N-gram patterns, with significance evaluated through t-tests and MannWhitney U tests. Three state-of-the-art multilingual transformer models such as mdeberta-v3-base, distilbert-base-multilingualcased, and xlm-roberta-base were fine-tuned on this dataset. The mDeBERTa-v3-base achieved the highest performance, with an F1-score 91.29 and accuracy of 91.26% on the test set. This research advances efforts in contesting misinformation and academic misconduct in Urdu-speaking communities and contributes to the broader development of NLP tools for low resource languages.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

AI文本检测 乌尔都语 NLP工具 低资源语言 学术不端
相关文章