cs.AI updates on arXiv.org 10月21日 12:24
基于图和GAT自动编码器的图像分类与检索方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于图和图注意力网络(GAT)自动编码器的图像分类与检索方法,通过构建图像及其类别的代表性模型,执行分类与检索过程,并利用图结构表示图像间的相似关系,通过GAT提取关键特征,实现图像的精准分类与检索。

arXiv:2510.16514v1 Announce Type: cross Abstract: We propose a method for image categorization and retrieval that leverages graphs and a graph attention network (GAT)-based autoencoder. Our approach is representative-centric, that is, we execute the categorization and retrieval process via the representative models we construct for the images and image categories. We utilize a graph where nodes represent images (or their representatives) and edges capture similarity relationships. GAT highlights important features and relationships between images, enabling the autoencoder to construct context-aware latent representations that capture the key features of each image relative to its neighbors. We obtain category representatives from these embeddings and categorize a query image by comparing its representative to the category representatives. We then retrieve the most similar image to the query image within its identified category. We demonstrate the effectiveness of our representative-centric approach through experiments with both the GAT autoencoders and standard feature-based techniques.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

图像分类 图像检索 图注意力网络 自动编码器 特征提取
相关文章