cs.AI updates on arXiv.org 前天 12:22
OpenLVLM-MIA:评估大型视觉语言模型隐私攻击的新基准
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出OpenLVLM-MIA,一个针对大型视觉语言模型(LVLMs)的隐私攻击(MIA)评估基准,揭示现有攻击成功率高的原因,并提出一个平衡样本分布的基准,以更准确地评估MIA性能。

arXiv:2510.16295v1 Announce Type: cross Abstract: OpenLVLM-MIA is a new benchmark that highlights fundamental challenges in evaluating membership inference attacks (MIA) against large vision-language models (LVLMs). While prior work has reported high attack success rates, our analysis suggests that these results often arise from detecting distributional bias introduced during dataset construction rather than from identifying true membership status. To address this issue, we introduce a controlled benchmark of 6{,}000 images where the distributions of member and non-member samples are carefully balanced, and ground-truth membership labels are provided across three distinct training stages. Experiments using OpenLVLM-MIA demonstrated that the performance of state-of-the-art MIA methods converged to random chance under unbiased conditions. By offering a transparent and unbiased benchmark, OpenLVLM-MIA clarifies the current limitations of MIA research on LVLMs and provides a solid foundation for developing stronger privacy-preserving techniques.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

隐私攻击 视觉语言模型 MIA评估 OpenLVLM-MIA 基准
相关文章