cs.AI updates on arXiv.org 10月21日 12:22
超图结构数据解耦学习研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文从范畴论角度分析超边解耦,提出一种新的解耦准则,并通过实验验证其在基因途径中捕获基因功能关系的潜力。

arXiv:2510.16289v1 Announce Type: cross Abstract: Despite the promising results of disentangled representation learning in discovering latent patterns in graph-structured data, few studies have explored disentanglement for hypergraph-structured data. Integrating hyperedge disentanglement into hypergraph neural networks enables models to leverage hidden hyperedge semantics, such as unannotated relations between nodes, that are associated with labels. This paper presents an analysis of hyperedge disentanglement from a category-theoretical perspective and proposes a novel criterion for disentanglement derived from the naturality condition. Our proof-of-concept model experimentally showed the potential of the proposed criterion by successfully capturing functional relations of genes (nodes) in genetic pathways (hyperedges).

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

超图结构数据 解耦学习 范畴论 基因途径 神经网络
相关文章