cs.AI updates on arXiv.org 10月21日 12:22
机器学习助力欧洲绿色政策分析
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文研究了机器学习在理解气候政策从宣布到实施进程中的应用,以欧洲绿色协议中的政策为对象,构建了包含165个政策的语料库,并通过对比不同文本表示方法预测政策进程,结果显示ClimateBERT在纯文本特征上表现最佳,而BERT结合元数据特征表现更优,为气候政策分析提供了新视角。

arXiv:2510.16233v1 Announce Type: cross Abstract: Climate change demands effective legislative action to mitigate its impacts. This study explores the application of machine learning (ML) to understand the progression of climate policy from announcement to adoption, focusing on policies within the European Green Deal. We present a dataset of 165 policies, incorporating text and metadata. We aim to predict a policy's progression status, and compare text representation methods, including TF-IDF, BERT, and ClimateBERT. Metadata features are included to evaluate the impact on predictive performance. On text features alone, ClimateBERT outperforms other approaches (RMSE = 0.17, R^2 = 0.29), while BERT achieves superior performance with the addition of metadata features (RMSE = 0.16, R^2 = 0.38). Using methods from explainable AI highlights the influence of factors such as policy wording and metadata including political party and country representation. These findings underscore the potential of ML tools in supporting climate policy analysis and decision-making.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

机器学习 气候政策 欧洲绿色协议
相关文章