cs.AI updates on arXiv.org 10月21日 12:20
LLMs在文献筛选中的应用与评估
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文量化了提示策略与大型语言模型(LLMs)的交互作用,以自动化系统文献综述(SLRs)的筛选阶段。评估了六种LLMs在五种提示类型下的表现,并分析了成本与性能的关系,为LLMs在文献筛选中的应用提供参考。

arXiv:2510.16091v1 Announce Type: cross Abstract: This study quantifies how prompting strategies interact with large language models (LLMs) to automate the screening stage of systematic literature reviews (SLRs). We evaluate six LLMs (GPT-4o, GPT-4o-mini, DeepSeek-Chat-V3, Gemini-2.5-Flash, Claude-3.5-Haiku, Llama-4-Maverick) under five prompt types (zero-shot, few-shot, chain-of-thought (CoT), CoT-few-shot, self-reflection) across relevance classification and six Level-2 tasks, using accuracy, precision, recall, and F1. Results show pronounced model-prompt interaction effects: CoT-few-shot yields the most reliable precision-recall balance; zero-shot maximizes recall for high-sensitivity passes; and self-reflection underperforms due to over-inclusivity and instability across models. GPT-4o and DeepSeek provide robust overall performance, while GPT-4o-mini performs competitively at a substantially lower dollar cost. A cost-performance analysis for relevance classification (per 1,000 abstracts) reveals large absolute differences among model-prompt pairings; GPT-4o-mini remains low-cost across prompts, and structured prompts (CoT/CoT-few-shot) on GPT-4o-mini offer attractive F1 at a small incremental cost. We recommend a staged workflow that (1) deploys low-cost models with structured prompts for first-pass screening and (2) escalates only borderline cases to higher-capacity models. These findings highlight LLMs' uneven but promising potential to automate literature screening. By systematically analyzing prompt-model interactions, we provide a comparative benchmark and practical guidance for task-adaptive LLM deployment.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLMs 文献筛选 系统文献综述 提示策略 成本性能分析
相关文章