cs.AI updates on arXiv.org 10月21日 12:20
CONEC-LoRA:解决DIL问题的持续知识巩固低秩自适应方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出CONEC-LoRA,一种针对领域增量学习(DIL)问题的持续知识巩固低秩自适应方法。通过整合任务共享和特定领域的LORA,提取通用知识并包含领域特定知识。实验结果表明,CONEC-LoRA在四个流行基准问题上的表现优于现有方法,优势超过5%。

arXiv:2510.16077v1 Announce Type: cross Abstract: Domain Incremental Learning (DIL) is a continual learning sub-branch that aims to address never-ending arrivals of new domains without catastrophic forgetting problems. Despite the advent of parameter-efficient fine-tuning (PEFT) approaches, existing works create task-specific LoRAs overlooking shared knowledge across tasks. Inaccurate selection of task-specific LORAs during inference results in significant drops in accuracy, while existing works rely on linear or prototype-based classifiers, which have suboptimal generalization powers. Our paper proposes continual knowledge consolidation low rank adaptation (CONEC-LoRA) addressing the DIL problems. CONEC-LoRA is developed from consolidations between task-shared LORA to extract common knowledge and task-specific LORA to embrace domain-specific knowledge. Unlike existing approaches, CONEC-LoRA integrates the concept of a stochastic classifier whose parameters are sampled from a distribution, thus enhancing the likelihood of correct classifications. Last but not least, an auxiliary network is deployed to optimally predict the task-specific LoRAs for inferences and implements the concept of a different-depth network structure in which every layer is connected with a local classifier to take advantage of intermediate representations. This module integrates the ball-generator loss and transformation module to address the synthetic sample bias problem. Our rigorous experiments demonstrate the advantage of CONEC-LoRA over prior arts in 4 popular benchmark problems with over 5% margins.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

领域增量学习 持续知识巩固 低秩自适应 CONEC-LoRA 知识提取
相关文章